Sub-0.5 nm Interfacial Dielectric Enables Superior Electrostatics: 65 mV/dec Top-Gated Carbon Nanotube FETs at 15 nm Gate Length

G. Pitner^{1†}, Z. Zhang^{2†}, Q. Lin³, S.-K Su⁴, C. Gilardi³, C. Kuo², H. Kashyap², T. Weiss², Z. Yu³, T.-A. Chao⁴, L.-J. Li⁴, S. Mitra³, H.-S. P. Wong^{3,4}, J. Cai⁴, A. Kummel², P. Bandaru², M. Passlack¹

¹Corporate Research, Taiwan Semiconductor Manufacturing Company, San Jose, CA, USA. Email: gpitner@tsmc.com

²University of California San Diego, San Diego, CA, USA. ³Stanford University, Stanford, CA, USA.

⁴Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan. [†]These authors contributed equally.

Abstract-To realize superior electrostatic control, a gate oxide bilayer for carbon nanotubes (CNT) is employed consisting of a 0.35 nm interfacial dielectric (k=7.8) and 2.5 nm high-k ALD dielectric (k=24). Using experimentally measured dielectric constants on sp² carbon and minimum oxide thickness on CNT, a C_{OX} on CNT of 2.94×10^{-10} F/m is calculated for top-gate geometry. Gate leakage sub-1 pA/CNT is measured at 0.7V, better than the sub-5 nm node technology target. Top-gated carbon nanotube field effect transistors in this paper have 65 mV/dec subthreshold slope and DIBL as low as 20 mV/V at 15 nm gate length. Negligible hysteresis and no degradation in drive current from the top-gate process is observed. TCAD modeling predicts this approach will enable 68 mV/dec for top-gate CNFET with 10 nm L_G, 1 nm CNT diameter and 250 CNT/µm, revealing a path to energy and performance gains from a CNT transistor technology.

I. INTRODUCTION

Carbon nanotube field-effect transistors (CNFETs) are a candidate logic transistor to extend density, efficiency, and performance improvements beyond the limits of conventional Si CMOS. This is enabled by the ~1 nm thin CNT body, high mobility/velocity, and lower parasitic capacitance [1]. CNFETs can be processed entirely at sub-400 °C enabling monolithic 3D integration of logic and memory with dense interconnectivity [2]. However, it has been challenging to fabricate the top-gate or surround-gate CNFETs for high performance applications due to fundamental obstacles in nucleating conventional highk atomic layer deposited (ALD) gate dielectrics on defect-free sp² bonded carbon surfaces. Fig. 1a-c highlights typical defect and step edge nucleation for ALD films on Highly Oriented Pyrolitic Graphite (HOPG), which has the same sp² carbon surface as CNT. To work around this obstacle, previous shortchannel CNFETs relied on approaches summarized in Table I [3-8]. The thick gate oxide (t_{OX}), low oxide capacitance (C_{OX}), and stability obstacles of these previous approaches limits CNFET performance, scalability, and robustness.

II. THIN HIGH-K DIELECTRICS ON CARBON NANOTUBE

This work overcomes these limitations with a very thin interfacial layer dielectric (ILX) composed of Al₂O₃ deposited by the low temperature "nanofog" method [10] that is compatible with sp²-carbon surfaces such as CNT. Fig 1d

shows 10 cycles of ILX (1.25 nm measured by TEM) conformably coating HOPG as a nucleation template for highk ALD. Fig 1e shows a dielectric bilayer on a CNT consisting of 6 cycles of ILX (~0.65 nm) and 20 cycles of HfO₂ (~2.5 nm) forms a continuous film on top of the CNT, demonstrating ILX nucleates readily on the CNT and enables conventional high-k ALD materials to be used for the CNT gate stack.

To understand the properties of this dielectric bilayer, the dielectric constants and minimum thickness of each layer must be measured. The dielectric constants of experimental ILX and HfO₂ layers with a TiN/Ti/Pd gettering gate were extracted from C_{OX} versus thickness series on HOPG (Fig 2). TEM cross-section inspection of bilayer in Fig 2b inset is used to verify the dielectric film thicknesses on HOPG. Experimental values of $k_{HfO2} = 24.0$ from the capacitance versus t_{HfO2} slope, and $k_{ILX} = 7.8$ from the $t_{HfO2} = 0$ intercept were determined.

The minimum thickness of ILX and HfO₂ on CNT is bounded by gate leakage current. To ensure that gate leakage current does not dominate circuit stand-by power, gate leakage per CNT at $V_{GS} = V_{DD}$ (I_{G,ON}) should be less than 10% of drain leakage per CNT at $V_{GS} = 0V (I_{D,OFF}) [11]$. The target $I_{G,ON} = 1$ pA/CNT for a 10 nm L_G, was determined from TCAD-based power-performance analysis that identifies multiple design options with significantly improved speed and efficiency over TSMC's sub-5 nm node Si CMOS [12]. A gate leakage test structure was fabricated on aligned CNTs on quartz as described in Fig. 3. To ensure that ILX nucleates on sp^2 carbon and not on process residues, ILX is deposited on pristine CNTs that have seen no processing after CNT chemical vapor deposition growth. Table II summarizes the bilayer conditions studied, CNT density, device dimensions, and the percentage of devices that meet the leakage target. Fig. 4 shows the measured I_G data for a representative chip with up to 104 devices per chip each normalized to a single CNT with 10 nm L_G. For devices with 2 cycles of ILX and 20 cycles of HfO₂, incomplete dielectric coverage results in less than 3% of the devices meet the leakage specification- indicating bilayer with highest achievable C_{OX} using this method. TEM in Fig. 5 measures an ILX thickness of 0.35 nm and a HfO2 thickness of 2.5 nm from 4 cycles of ILX and 20 cycles of HfO₂. These devices used a non-gettering gate, but a repeat leakage test with TiN/Ti/Pd gate metal as used in k-value extraction resulted in similar leakage.

3.5.1

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 20,2022 at 06:19:38 UTC from IEEE Xplore. Restrictions apply.

III. SHORT CHANNEL TOP-GATE CNFETS

To validate the usefulness of ILX on CNT, top-gate CNFETs were fabricated with L_G from 100 nm to 15 nm. The top-gate (TG) CNFET device structure is illustrated in Fig. 6. The BG is used to apply a negative bias to the extension region of the CNFET during TG measurements, using electrostatic doping to create a P-N-P carrier profile along the CNT in the off-state. In Fig 6b-c the 15 nm L_G is verified by SEM and TEM cross-section on a device displaying 65 mV/dec sub-V_T slope. The top-gate CNFET devices were fabricated with a dielectric bilayer consisting of 10 cycles ILX (~1.25 nm) and 20 cycles of HfO_2 (~2.5 nm), and a non-gettering gate, which is relaxed from the t_{ILX} limit identified by gate leakage in previous section. TG leakage is below measurement noise floor across the +/-1.5V sweep range. Fig. 7a shows the I_D-V_{GS} characteristics for the same CNFETs at different stages of fabrication. Critically, the CNT current is not degraded by dielectric deposition as often occurs with conventional ALD on CNTs [6]. Ambipolar current is suppressed for TG CNFETs as the BG firmly sets the CNT potential near the metalsemiconductor Schottky-contact. Fig 7b shows an example CNFET I_DV_{GS} ($L_G = 100 \text{ nm}$) with 60 mV/dec sub-V_T slope and <20 mV/V DIBL. A V_{GS} sweep range of 0.7V is indicated, suggesting ILX enables V_{GS} and V_{DS} operation with nominal V_{DD} . Fig 7c plots I_D - V_{DS} behavior with saturation across a 200 nm contact separation at >10 μ A per CNT at -0.75V V_{DS}.

Short-channel effects are considered in Fig. 8 by measuring sub-V_T slope versus gate length. TG devices display 60-70 mV/dec for all physical L_G from 100 nm to 15 nm, confirming excellent gate control and suggests low D_{IT}. Two example devices with 15 nm L_G display DIBL below 20 mV/V in Fig. 8b and sub-V_T slope of 65 mV/dec in Fig 8c. In Fig. 9 an unpassivated CNFET initially has hysteresis $\Delta V_T \approx 2V$ across +/- $3V V_{BG}$ sweep range. After TG fabrication, due to improved C_{OX} the ΔV_T from hysteresis is reduced to below the noise level (due to oxide traps) across a 0.5V V_{GS} sweep range for high performance logic. Electrostatics will be significantly improved in future CNFETs by thinning ILX from 1.25 nm to 0.35 nm as demonstrated in leakage test structures (Section II).

IV. ELECTROSTATICS MODELING DOWN TO 10 NM LG

Thin-body cylindrical channel materials such as CNT fundamentally cannot use simple capacitance figures of merit (such as equivalent oxide thickness, EOT) because:

- Complex transistor geometries (BG, TG, DG, and SG from Fig 10) and multiple device parameters (*e.g.* d_{CNT}, total t_{OX}, P, L_G, L_{EXT}, N_{EXT}, *etc...*) <u>strongly</u> influence the gate electrostatic control over the CNT channel. A simple approximation has yet to be defined.
- 2) In a cylindrical channel, C_{OX} is primarily limited by interfacial layer properties t_{ILX} and k_{ILX} due to electric field profile $\propto 1/(k_{OX}R)$ (Fig 11a). Therefore planar EOT $\propto k_{OX}/t_{OX}$ intuition does not apply. For example, interchanging the order of the k-value of the bilayer for planar gate geometry gives the same C_{OX} , but the cylindrical geometry gives different values of C_{OX} .

3) The t_{OX} is thicker than the channel body of ~1 nm d_{CNT} so fringing fields through gate oxide dominate short channel effects. Therefore, total gate physical t_{OX} is a key figure of merit in addition to C_{OX} .

For example, Fig 11b-c compares the thicker ZrO_2 dielectric film (t_{OX} = 8 nm, k = 25) from ref. 8 to this work in a TG TCAD model. The calculated C_{OX} for both structures is nearly identical, with 2.8×10^{-10} F/m for ref. 8 and 2.9×10^{-10} F/m in this work with CNT pitch (P) of 15 nm. Fig. 11b shows the potential drop due to fringing field from the drain contact is worsened by thick dielectric. Similarly, Fig 11c compares screening effects from dense CNT (P = 4 nm) to sparse CNT (P=15 nm). Thick oxide has degraded electrostatic control in the regions between the dense CNT compared to thin oxide.

TCAD modeling is used to evaluate whether a gate dielectric sufficiently asserts gate control over the semiconducting channel in the off-state. To focus on electrostatic control as a function of gate oxide, this modeling work has decoupled tunneling leakage. Modeling results are summarized in Fig 12 and Table I for this work and Ref. 3,4,6 and 8. Fig 12a models sub-V_T slope versus gate length illustrating TG, DG, and SG geometries offer superior electrostatic control compared to BG as the gate length approaches 10 nm, demonstrating the need for a gate dielectric deposition process on CNT. In Fig. 12b the sensitivity of CNFET sub-V_T swing at $L_G = 10$ nm is modeled considering gate geometry (BG, TG, DG, SG), CNT density (P=15, P=4), and high-k film thickness (2-5 nm dielectric k = 25, on 1 nm ILX with k = 8). For ILX = 1 nm, only DG and SG structures appear feasible to deliver sub-70 mV/dec for 250 CNT/um. The 8 nm ZrO_2 film (k=25) from ref. 8 with similar C_{OX} only delivers 97.8 mV/dec, highlighting the importance of simultaneously large C_{OX} and small t_{OX} . With the ILX and HfO₂ oxide bilayer demonstrated in this work for a TEM-measured thickness and electrically measured dielectric constant (with gettering gate), t_{ILX} 0.35 nm (k=8) and t_{HfO2} of 2.5 nm (k=24), the calculated sub-V_T slope for P=4 nm is 68 mV/dec. This approach can be further improved with a SG geometry.

ACKNOWLEDGMENT

The authors thank C. Diaz and A. Kumar. Work supported by Stanford SNF and SNSF NSF award ECCS-1542152; UCSD Nano3 NSF award EECS-1542148; Stanford SystemX and DARPA 3DSoC. TEMs by S. L. Liew, and Y.C. Liang.

REFERENCES

- [1] G. Hills et al., IEEE Trans. On Nano., vol. 17, no. 6, pp. 1259-1269, 2018.
- [2] M.M. Sabry et al., IEEE Proceedings, vol. 107, no. 1, pp 19-48, 2019.
- [3] A Franklin et al., Nano Letters, vol. 12, pp. 758-762, 2012.
- [4] C Qiu et al., Science, vol. 355 p. 271-276, 2017.
- [5] D. Farmer et al., Nano Letters, vol. 6, no. 4, pp. 699-703, 2006.
- [6] A Franklin et al., Nano Letters, vol. 13, pp. 2490-2495, 2013.
- [7] L. Liyanage et al., Nanotechnology, vol. 24, pp 245703, 2013.
- [8] A. Javey et al., Nature Materials, vol. 1, pp 241-246, 2002.
- [9] R. Park et al., ACS Nano, vol. 11, no. 5, pp 4785-4791, 2017
- [10] I. Kwak et al., Applied Surface Science, vol. 463, pp. 758-766, 2019.
- [11] C.-H. Jan et al., IEDM, pp. 647-650, 2009.
- [12] G. Yeap et al., IEDM, pp. 879-882, 2019.
- [13] A. Grills et al., Diamond and Related Mater., vol. 10, pp. 234-239, 2001.

Fig. 1. Conventional ALD does not nucleate on sp² carbon surfaces, ILX forms a nucleation layer for HfO₂ ALD. (a-c) AFM images showing ALD Al₂O₃, HfO₂, and ZrO₂ nucleate on defects or step edges, remains discontinuous even after 50 cycles on HOPG. (d) ILX after only 10 cycles (1.25 nm) is conformal and pinhole free on HOPG. (e) 6 cycles of ILX (~0.65 nm) forms continuous film on pristine aligned CNT as nucleation layer 20 cycles of HfO₂ (~2.5 nm) (f) Standard process conditions are used for each ALD sample on HOPG.

Reference	Geometry (Fig. 10)	Interfacial Material Thickness & Dielectric constant	High-k Material Thickness & Dielectric constant	C _{ox} from TCAD (P=15 nm)	C _{ox} from TCAD (P=4 nm)	Advantages	Limitations
Ref. 3 IBM 2012	Back- Gate (SG)		HfO ₂ 3 nm k = 18	1.54×10 ^{.10} F/m (BG)	1.04×10 ⁻¹⁰ F/m (BG)	Avoids ALD challenge on CNT	Lower electrostatic control vs. TG, DG, SG. (Fig 12)
Ref. 4 PKU 2017	Top-Gate (TG)	Electron Beam Induced (EBID) Carbon < 1 nm k ~ 3.3 [13]	HfO ₂ 3.5 nm k = 18	1.3×10 ^{.10} F/m (TG)	7.3×10 ⁻¹¹ F/m (TG)	Realize thin ALD oxide on CNT	Low-k carbon severely degrades C _{ox} (Fig 11) Carbon residue is not manufacturable
Ref. 6 IBM 2013	Surround -Gate (SG)	AlO _x N _Y 1.5 nm K _{eff} ~ 8.5	HfO₂ 8 nm <u>K_{eff} ~ 8.5</u>	1.63×10 ⁻¹⁰ F/m (SG)	1.63×10 ⁻¹⁰ F/m (SG)	 Overcomes nucleation problem SG geometry has best electrostatics. 	 Low k_{eff} reported for total film, limits C_{OX} Requires 50 cycles for continuous interfacial dielectric. Oxide bilayer is too thick, degrades electrostatic control for dense CNTs
Ref. 8 Stanford 2002	Top-Gate (TG)	-	ZrO₂ 8 nm k=25	2.8×10 ⁻¹⁰ F/m (TG)	9.8×10 ⁻¹¹ F/m (TG)	 Avoids ALD challenge on CNT by overgrowing from substrate and defects. High C_{OX} without interfacial layer 	Does not work for SG. Nucleation at defects degrades mobility. Requires thick oxide, which degrades electrostatic control.
This work	Top-Gate (TG)	Al ₂ O ₃ <u>Nanofog</u> 0.2-0.5 nm k = 7.8	HfO ₂ 2.5 nm k = 24	2.94×10 ⁻¹⁰ F/m (TG)	1.87×10 ⁻¹⁰ F/m (TG)	High C _{ox} and oxide bilayer is thin. Interfacial layer is relatively high-k Compatible with SG Continuous in 4 cycles or less	

Table I: Summary of existing approaches and this approach to nucleate thin high-k dielectric on CNT, including materials parameters, C_{OX} simulated from TCAD models (same assumptions in Fig 12, and simulation uses same gate geometry used in the reference), and an analysis of advantages and limitations.

Chip #	ILX # Cyc	HfO2 # Cyc	# CNT per device	L _G / W (µm)	% Devices I _G < 1 pA/CNT at V _{GS} = 0.7 V
1	10	40	180	5 /100	>85%
2	10	30	106	5 / 100	75%
3	10	20	91	5 / 100	60%
4	8	20	175	5 / 100	57.5%
5	6	20	134	5 / 100	85%
6	4	20	24	5 / 100	50%
7	2	20	86	5 / 100	< 3%

Table II. Summary of experimental dielectric bilayer conditions in leakage measurements on pristine CNTs. Steep decrease in % of devices that meet a 1 pA/CNT gate leakage specification at 0.7V V_{DD} between 4 cycles of ILX and 2 cycles of ILX, indicating 4 cycles is the thickness limit of ILX for this bilayer due to incomplete coverage of the CNT.

Fig. 6. (a) Device structure for short-channel top-gate CNFETs with electrostatically doped extensions through back-gate. (b) SEM image of top-gate CNFET with 15 nm L_G and labeled source, drain and gate electrodes. (c) Cross-section TEM validating L_G of 15 nm on CNFET with Sub-V_T slope of 65 mV/dec.

Fig. 2. Experimental determination of k-values for bilayer oxide. (a) Capacitance per unit area at 50 kHz for various thickness of HfO_2 on 1.25 nm ILX on sp² carbon surface of HOPG substrate. Leakage current density is negligible for all samples. (b) Equivalent oxide thickness (EOT) versus HfO_2 thickness. Extracted k-values of HfO_2 is 24.0, and ILX is 7.8.

Fig. 3. Process flow for gate leakage measurement test structure on pristine CNTs. Top row: (1) Pristine aligned CNT grown on quartz. (2) Deposit ILX (thickness in Table II). (3) Remove ILX and CNTs from outside active region. Bottom row: (4) Pattern contact electrodes, etch ILX within contact region, evaporate then liftoff 1 nm Ti and 20 nm Pt. (5) ALD HfO₂ (thickness in Table II). Pattern via and etch HfO₂. (6) Pattern gate electrode, evaporate then liftoff 1 nm Ti and 20 nm Pt. The gate length is 5 μ m and the extension length is 2.5 μ m per side for data reported in this paper.

Fig. 4. A sharp decrease in yield marking thickness limit is observed from I_G vs V_{GS} data for, normalized for a single CNT across 10 nm L_G Chip 6 with 4 / 20 cycles of ILX / HfO₂ and Chip 7 with 2 / 20 cycles of ILX / HfO₂. Horizontal line indicates single-CNT leakage target for 10 nm L_G CNFET. Note: Ti/Pt gate here differs from TiN/Ti/Pd gate used for k-value extraction. Repeated test using TiN/Ti/Pd gate resulted in similar leakage.

Fig. 5. HRTEM of Chip 6 (Table II) with 4 cycles ILX and 20 cycles HfO₂. Layer thicknesses are 0.35 nm for ILX and 2.5 nm for HfO₂.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 20,2022 at 06:19:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Top-gate CNFET IV data (a) I_D -V_{GS} for 13 CNFETs progressing through fabrication: blue uses TiN back-gate (BG) and CNTs are unpassivated, red is TiN BG with 10 cycles ILX and 20 cycles HfO₂ without top-gate, and black the CNTs are measured by biasing the Pd top-gate (TG). I_{ON} and I_{OFF} are not degraded, Sub-V_T slope is improved (60 mV/dec indicated in magenta), and V_T shifts +2V. (b) Example 100 nm L_G CNFET with 60 mV/dec sub-V_T slope and <20 mV/V DIBL. A $V_{DD} = 0.7V$ gate sweep range (cyan dashed lines) indicated for symmetric $V_{DS} = V_{CS} = V_{DD}$ operation starting from 10 pA/CNT off-current. (c) Example I_D -V_{DS} -0.75V across 200 nm separation between SD with maximum current >10 μ A for a single CNT.

Fig. 8. Electrostatic control in top-gate CNFETs. (a) Sub-V_T Slope versus gate length, with 65 mV/dec achieved down to 15 nm L_G and several instances of 60 mV/dec at longer gate lengths. Sub-V_T slope averaged across >180 mV of V_{GS} range. (b) I_D -V_{GS} of 15nm L_G CNFETs with 20 mV/V of DIBL. (c) I_D -V_{GS} of a 15 nm L_G CNFET with 65 mV/dec of sub-V_T slope. Future improvements in electrostatic control are likely when shrinking ILX gate dielectric from 1.25 nm to 0.35 nm. Note: L_{CH} in off-state is larger than physical L_G with low extension doping. Note 2: Precision in extracting sub-V_T swing and DIBL is often limited by trap noise which may shift V_T during measurement, as seen in (c).

Fig. 11. Gate dielectrics to cylindrical channel are best evaluated by two metrics: C_{OX} and total oxide thickness. (a) Radial profile of potential and electric field in cylindrical bilayer dielectric from COMSOL simulation illustrating interfacial layer limiting C_{OX} with k_{ILX} and t_{ILX} account for 53% voltage drop with only 12% of thickness. A planar capacitor would have only 30% voltage drop in ILX region. (b) In CNT $t_{OX} >> d_{CNT}$ so fringe fields from drain and source extensions degrade sub- V_T slope travel mostly through gate dielectrics. Effect is worse for thick oxides even if total C_{OX} is similar (e.g. this work compared to Ref. 8). (c) Gate control between adjacent CNTs is significantly worse for thick dielectrics, particularly for dense CNT with P=4, due to screening effects between CNTs the gate must overcome to turn off the channel.

Fig. 9. Hysteresis in CNFET with BG (blue), BG with ILX and HfO₂ passivation (red), and top gate with 3V (black), 0.7V (magenta) and 0.5V (green) of V_{GS} sweep range. The higher C_{OX} of TG significantly improves hysteresis. At 0.5V sweep range on TG, the ΔV_T from hysteresis is less than noise observed due to trap effects.

Fig. 10. Schematic CNFET geometries. TG, Double Gate (DG), and SG require a process capable to deposit thin, high-k, leakage free dielectric on top of sp² carbon surface. Light grey is SiO₂, dark grey is Si substrate, blue is gate metal, red is ILX + high-k dielectric stack, green is CNT. CNT pitch (P) and CNT diameter (d_{CNT}) are key design parameters for CNFET drive current and energy efficiency optimization.

Fig. 12. 3D TCAD modeling results. (a) Short channel subthreshold slope behavior indicates that the top-gate, double-gate, and surrounding gate geometry have superior electrostatic control at short channel versus backgate geometry, therefore a process to deposit dielectric on CNT is essential. (b) CNFET gate geometry, CNT density, and dielectric k and total thickness are critical parameters in determining sub-V_T slope. For each curve we simulate $T_{ILX} = 1$ nm, $k_{ILX} = 8$ for $k_{HK} = 25$ and T_{HK} from 2-5 nm with P=4 and P=15. N_{EXT} is doping strength in the extension region. Note 1: SD tunneling and band-to-band tunneling are decoupled from this modeling, but the 1nm d_{CNT} and 0.6 nm⁻¹ N_{EXT} are chosen in a regime in which these tunneling effects are suppressed. Note 2: Stars use dielectric thickness and k values from this work and ref 8.